Technical Program

CCR-3: Machine Learning for Characterization of Cognitive Communications and Radar III

Symposium: Symposium on Machine Learning for Characterization of Cognitive Communications and Radar
Session Type: Lecture
Time: Friday, December 9, 14:00 - 15:40
Location: Salon H
Session Chair: George Stantchev, Naval Research Laboratory
 
14:00 - 14:20
CCR-3.1: BLIND CHANNEL GAIN CARTOGRAPHY
         Daniel Romero; University of Minnesota
         Donghoon Lee; University of Minnesota
         Georgios B. Giannakis; University of Minnesota
 
14:20 - 14:40
CCR-3.2: USING DEPENDENT COMPONENT ANALYSIS FOR BLIND CHANNEL ESTIMATION IN DISTRIBUTED ANTENNA SYSTEMS
         Janis Nötzel; Universitat Autònoma de Barcelona
         Christian Arendt; BMW Group
 
14:40 - 15:00
CCR-3.3: SENSITIVITY OF L-1 REGULARIZATION ON SUBSPACE-BASED SIMO BLIND CHANNEL IDENTIFICATION IN SAMPLE CHANNEL MEASUREMENTS
         Kareem Bonna; Rutgers University
         Predrag Spasojevic; Rutgers University
 
15:00 - 15:20
CCR-3.4: A SEQUENTIAL DETECTION APPROACH TO INDOOR POSITIONING USING RSS-BASED FINGERPRINTING
         Negar Etemadyrad; George Mason University
         Jill K. Nelson; George Mason University
 

GlobalSIP 2016 thanks the following for their support.